Scotti-BYTE Enterprise
Consulting-Services

Networking Tutorial: Accessing Remote Systems

There are many different ways in which to communicate between systems over the network. Some
interfaces entail connecting a remote file system over the network and some involve connecting to
a remote system to run a command.

The Secure Shell "ssh" is an encrypted protocol used to administer and communicate with remote
servers. Desktop computers normally have a GUI Interface. Ubuntu servers normally only have a
command line interface. Therefore, administering an Ubuntu server is likely done over the network
from a terminal and "ssh" is a very common means to do so.

By default, "ssh" logs an identity or fingerprint for a remote system and if that changes, ssh
assumes that the remote system might have been spoofed and does not immediately connect.

x scott@Pi-Hole: ~
Also, by default, "ssh" accepts a @ scott@Pi-Hole: ~

username and password to log FRSSSESSESSEEESN
into the remote system.

To increase security, you can
establish an "RSA" crypto-key to
verify and grant access to a
system via the "ssh" protocol.

G N o
pair on your client machine. The g
client is the computer that will be

used to connect to the remote server.

scott Nmondo JEI

Use the "ssh-keygen" command. By
default ssh-keygen will create a 2048-
bit RSA key pair, which is secure
enough for most use cases (you may
optionally pass in the -b 4096 flag to
create a larger 4096-bit key). The
option to name the key exists if you
have many keys that you want to be
unique. Optionally, you can enter a

passphrase as well which provides another password challenge. Since we are using keys that will
be unique to this username and system, | did not enter a passphrase.

At this point, you have a public and private key that you can use to authenticate. The next step is to
place the public key on the remote system so that you can use SSH-key based authentication
instead of a username/password to sign on to the remote system.

The quickest way to copy your public key to the Ubuntu host is to use a utility called ssh-copy-id.
X scokk:~

Enter the command in "blue" in j& e

the screen image. You will be

asked a couple times if this is

what you want to do.

scott mD ssh-copy-id scott@l?

As you can see, the key is finally
added.

i o tt@Pi-Hole: ~
The screen at right shows that an

scott@Pi-Hole: ~
"ssh" login now no longer asks for
the password, which means the
key is being used.

scott Wmondo' JEN

If you get the error "Failed to add
the host to the list of known
hosts", then you need to exit back
to the system from which you
initiated the "ssh" from and
perform the following:

cd .ssh
sudo chown <username> known_hosts

The next time that you log into the & SRRl
remote system, it will work [k S
without any messages as you can [— S L

see in the screenshot at right.

There is another command called remote shell "rsh" which is designed to execute a single
command on a remote system while staying on the local system:

BE: scotb:~

scott Vmondo" JE

No login information was requested in the above command because of the RSA key that we shared
in a previous step. In general, ssh is secure and encrypted, and rsh is not. The "ssh" command is
a replacement for the older "telnet", "rlogin" and "rsh" commands. As you can see, the older
commands do still exist.

There is also an "rexec" command and like "rsh" it allows you to execute a command on a remote
system. The "rexec" command requires a password and is also insecure.

The "rcp" command is a "remote copy" and allows you to transfer files to and from another system
over the network. Just like the above commands, there is an "scp" command which stands for
secure copy and is recommended over "rcp".

In the following examlpe, the "touch" command is creating a new file. The "scp" is secure copying
the file to the remote system and renaming the file on the remote system during the copy. Finally,
we do a secure shell "ssh" to show the directory listing on the remote system.

R scokk:~

Another "ssh" command is a utility called the secure shell file system (SSHFS). This provides a
way to actually mount a folder and file structure on a remote system thus making it appear to be
part of the local file system. This "SSHFS" protocol is a file system client that uses the secure SSH
File Transfer Protocol (sftp).

To install "sshfs":
sudo apt install sshfs

To mount a remote file system, you must first create a local directory in which to mount the remote
system:

sudo mkdir /mnt/example-remote
Now we can mount a remote file system for local access:

sudo sshfs -0 allow_other,default_permissions scott@172.16.1.6: /mnt/example-remote

You can see this in the following screenshot:

B2 scotb~

Note that the "Is" command lists the file on our remote system through the local directory /mnt/
example-remote. Any files added either locally to that folder or remotely will appear on both sides.
Essentially, this is a simple and secure remote file system.

The "fusermount” is the command to unmount an "sshfs" mount. Normally "umount" can unmount
most file systems, but "sshfs" is different.

File system in Userspace (FUSE) is a software interface that allows non-privileged users to create
their own file systems. The only reason that our "sshfs" file system above used "sudo" was that we
were mounted into "/mnt/example-remote" and the "/mnt" is a system area.

This mount could have just as easily been to a folder that was owned by a user. It is generally good
practice to mount all file systems in "/mnt" if they are intended to be accessed by other users.

Our example continues in the screen image above. The "fusermount" command unmounts the
"sshfs" file system. The "Is" command now shows no files because the remote system is no longer
connected and "/mnt/example-remote" is just an empty directory.

There are many other ways to access remote file systems. Linux provides "nfs" which is "Network
File System". The "nfs" file system works by installing the server, creating an export directory,
assigning server access to selected clients through the export file and exporting the shared
directory.

| have found that most linux variants usually install "Samba Server" which is a Windows Server
Message Block/Common Internet File System (SMB/CIFS). Microsoft File Shares are so
mainstream that | find it easier to use them from my Ubuntu system rather than NFS.

As long as you are connecting to and using file systems, you will find that it is critical to not only
mount and unmount them dynamically, but mounting the file system to be statically available and
persistent between reboots is desireable.

This paper has been written with remote file systems in mind. To mount a file system so that it is
accessible between reboots, you need to edit the file system table file (/etc/fstab) to add a new
mount entry.

The most common and mandatory entry you will see in the fstab is an entry that mounts the root (/)
file system. The root file system is the core of the linux operating system and where everything
starts. The ultimate God privilege in linux is called root (/) because anyone with root (/) privilege
owns the file system. Everything in linux is a file and so "owning" root is the ultimate privilege.

To see how linux mounts the root file system in Ubuntu, launch the app called "disks" from the app
drawer and highlight the linux file system. On an EFI booting GUID partition table, the system disk

will always have a FAT32 EFI boot partition as the first partition and the second partition will be the
root (/) partition containing the operating system.

Disks = 43 GB Hard Disk

"= 43 GB Hard Disk

2) VBOX HARDDISK ydel WBOX HARDDISK (1.0)

) Co/ovDDrive Size 43 GB (42,949,672,960 bytes)

2 VBOX CD-ROM 1ing GUID Partition Table

r WB5746b114-73912615
nent SMART is not supported

Volumes
o —
Filesystem Filesystem
Partition 1: ... Partition 2
537 ME FAT | 42 GB Extd
= - R

Size 42 GB— 32 GB free (24.9% Full)

e [dev/sdaz

) €33b8944-725d-46c9-966e-eedb2480477b
1 Type Linux Filesystem

s Ext4 (version 1.0) — Mounted at Filesystem Root

Note the UUID in the above listing. When you list the /etc/fstab file, you will see the mount entry for
the system partition which | highlighted below:

Jetc/fstab: static file system information.

Use 'blkid' to print the universally unique identifier for a
device; this may be used with UUID= as a more robust way to name devices
that works even if disks are added and removed. See fstab(5).

<file system> <mount point=> <type> <options>
was on /dev/sda2 during installation
UUID=c33bB944-725d-46C9-966e-eedb2480477b
[boot/efi was on fdevfsdal during installation
UUID=C8E2-D1A1 [boot/efi vfat umask=0077

<dump> <pass>

extd errors=remount-ro 0

You will also see the mount entry for the efi boot partition two lines down and you can reference that
partition similarly in the "disks" app. If you had another hard disk physically installed in your system
which you wanted to persistently mount, you would add it to the /etc/fstab.

On my system, | have a spinning drive for which | creating a /mnt/MondoSeagate mount folder for.
| referenced the "disks" app to find its UUID and the mount command is as follows:

UUID=7a7c3efa-951a-4be2-9bcb-b8193a5f38ae /mnt/MondoSeagate ext4 rw,exec 0 0
To mount an SSHFS disk persistently in the /etc/fstab, the entry would look like:
username@host:/remote/dir /mnt/mount-folder fuse.sshfs defaults 0 0

In order to persistently mount a CIFS Windows share at boot time on an Ubuntu system, you will
need to install a utility package:

sudo apt update
sudo apt install cifs-utils

First create the mount point directory:
sudo mkdir /mnt/win_share
To mount the share from the command line:
sudo mount -t cifs -0 username=<windows-user> //server-ip/sharename
You will be prompted for the password.
In order to mount a CIFS share in the /etc/fstab, the entry might look like this:

/[server-ip/sharename /mnt/sharename cifs
username=x,password=y,dir_mode=0777 ,fle_mode=0777 0 O

The above command would be on a single line and would grant everyone on the Linux system full
read and write access to the remote CIFS share. Usually, linux users might mount a CIFS share on
a per user and per session basis from the GUI File manager.

Also, it is more secure to put the user credentials in a separate file only accessible by root (/).
However, there are times when a persistent mount through the fstab might be very desireable.

Mount commands in /etc/fstab have a huge number of options. | have provided only the most basic
entries.

The /etc/fstab was mentioned above in the context of accessing remote systems. I've included this
very basic information in hopes that it persistent mounts could be used for sshfs, nfs, and cifs files.
The /etc/fstab is also the place to mount iscsi drives as well.

Iscsi is a very high performance network based file system and is beyond the scope of this paper.
Hopefully the "r-" services and their secure "s" variants described herein will be helpful tools in
communicating between linux systems and even non-linux systems from linux on a network.

