Scotti-BYTE Enterprise
Consulting-Services

How to Build a Webserver from Scratch

Most websites are based in the cloud on hosting services and many of those hosting services are
very inexpensive and even free. This tutorial will discuss the process to building a completely self-
hosted web server on private cloud. The consensus regarding this approach is that it is easier to
build a web presence in the public cloud. The reason for this is that hosting services already have
an accessible cloud presence and their servers are based in data centers with proper redundancy
and backup.

However, there is an increasing thought that since private cloud devices are more and more
prevalent, having complete control and ownership of your hosting might be the way to go. There
are several ways to build a webserver. In this tutorial we will talk about using an open source
website builder called "Wordpress". Wordpress is a content management system (CMS) that lets
you build and maintain your website and was first released in 2003. Since that time, Wordpress
has become the top (CMS) with 62% of the market share. It is believed that 35% of the Internet is
powered by Wordpress Webservers and that number is still growing.

We will be building a Webserver on an LXC container. It is worthwhille to note that these steps
would also work on something as minimal as a Raspberry Pi. To build our website, we need our
LXC container, a user account with sudo privileges, and a LAMP stack. LAMP stands for Linux,
Apache, MySQL and PHP. We will then secure our website with SSL. Once the LAMP stack is
installed, we can install Wordpress and start to configure the website. In order to secure our
website with SSL, we need our own domain name. There are lots of places to register a domain
name. | registered a domain name on Google Domains for $12 a year.

Once our website is built, we will be opening access to it on our router so that it can be contacted
from the public Internet. Since we are creating an LXC container on a QNAP NAS, | will go through
those steps. If you have a Raspberry Pi, you can skip ahead to where | install the create the sudo
account and install the "ssh server". Our LXC container will be Ubuntu 18.04, but Raspberry Pi OS
is Debian based and the commands are the same as for Ubuntu.

On QNAP, head on over to "Container Station" and choose "Create". Scroll to the very button and
create an Ubuntu 18.04 LXC Container and make the settings like those in the following screen
shot.

Container Station

Create Container

Image ubuntu-bionic

Name | Webserver-Tutorial

Auto start ()

CPU Limit - 20 %

Memory Limit: « 2048 MB

The CPU limit must be within 10-100 %. The memory limit must be within 64-64278MB.

E Advanced Settings >>

Next, click on advanced settings and change the Network settings to "Bridge", click the arrows to
the right of the container MAC address to generate a unique/persistent hardware address, and
select the adapter you want if you have more than one. Now select "Static Address" and enter an
address for your web server that you know is available. In my case 192.168.80.40.

Create Container

E] Advanced Settings >>

Container Hostname :

| Metwark ‘
Container MAC Address : | 02:42:80:A0:AD:7B c|
Device
Network Mode : ‘ Bridge v|
Shared F...
Use Interface : ‘ Adapter 4 (Cloud DMZ) v|

) UseDHCP @ Use static IP

IP Address - ‘ 192 || 168 || 80 || 40 ‘
Netmask : ‘ 255 || 255 v|| 255 v|| 0 v‘
Gateway : EENERE ‘

Create Cancel

Click "Create" and on the summary page, click ok. Your LXC container is now being created. Go
back to the "Overview" in container station and it should show up.

Webserver-Tutorial . .
O 5] : e 0% 0% 0B/s 76B/s] 0] X

Click on the name in blue and the console will open.

Container Station -_ e ¥

£= ContainerStation & &

Management i Webserver-Tutorial [4 Settings | | W stop \ \ X Remove

€2 Overview

Create Image ubuntu-bionic:latest Network Usage : 34B/s 0B/s
D: Webserver-Tutorial Application: -- 1.5k
Import Entrypoint -- Command gk
500
CPU 0% RAM 0%
Export o
Console .~

Logs

o Connected to tty 1
|‘| Preferences Type <Ctrl+a g> to exit the console, <Ctrl+a Ctrl+a> to enter Ctrl+a itself

: Ubuntu 18.84.1 LTS Webserver-Tutorial pts/@
Resource
¥Webserver-Tutorial login: wbuntu (automatic login)

<> = "

X2 Images

Last login: Mon Jul 6 17:26:29 UTC 2020 on pts/2

Welcome to Ubuntu 18.84.1 LTS (GNU/Linux 4.14.24-gnap x86_64)

" Volume
* Documentation: https://help.ubuntu.com
sy = 3 * Management: https://landscape.canonical.com
[l Cantainers .
Support: https://ubuntu.com/advantage

ubuntug@hWebserver-Tutorial:~%

This is the point where the commands would be the same for our LXC container or a Raspberry Pi
from here on. At the command prompt, enter the following two commands:

sudo apt update
sudo apt upgrade

The default password in the LXC container is "ubuntu" and the username is ubuntu. Change that
password:

sudo passwd

Now install the ssh server so we can access the system remotely:
sudo apt install openssh-server

Create a privileged user account:

sudo adduser webgod

Grant the new user sudo privilege:
sudo usermod -aG sudo webgod
Now open a terminal and connect to the system remotely:

ssh webgod@192.168.80.40

webgod@Webserver-Tutorial: ~

god@wWebserver-Tutorial: ~

Now we begin to install the "LAMP" stack. Install the Apache web server:
sudo apt install apache2

At this point you will be able to open a webbrowser and go to your address: http://192.168.80.40/
and you will see an Apache web page.

Now we need a database. Install the mysql database package:
sudo apt install mysql-server

Secure your installation:
sudo mysql_secure_installation

You will be asked if you want to run the validate password plug-in. This is your choice and it just

improves security. Provide a password of your choosing for SQL, remove anonymous users,
disallow root login remotely, and delete the test database. Finally reload the privilege tables.

Sign on to MySql:
sudo mysq|
Change the root account to sign on with a password (change password to your desired password):

ALTER USER 'root'@'localhost' IDENTIFIED WITH mysql_native_password BY 'password’;
FLUSH PRIVILEGES;

List the users and see that "root" is set to login with a password:

SELECT user,authentication_string,plugin,host FROM mysql.user;
exit

webgod@Webserver-Tutorial: ~

webgod@Wwebserver-Tutorial: ~

You will note above that | checked to see whether the root account was set to login with a
password. Do not set your password to "password" as | did above. Choose a secure password.

PHP is the component of your setup that will process code to display dynamic content in your web
pages. It can run scripts, connect to your MySQL databases to get information, and hand the
processed content over to your web server to display. Install PHP as follows:

sudo apt install php libapache2-mod-php php-mysql
By default, if a user requests a directory from the server, Apache will first look for a file called
index.html. We want to tell the web server to prefer PHP files over others, so make Apache look for
an index.php file first.
We need to install the nano editor to edit a configuration file:

sudo apt install nano
To edit the configuration file:

sudo nano /etc/apache2/mods-enabled/dir.conf
Change the contents to look like this:
<lfModule mod_dir.c>

Directorylndex index.php index.html index.cgi index.pl index.xhtml index.htm

</lIfModule>

The change is to make index.php first and index.html second in the list. After you make the
changes, CTRL-X and "Y" to exit and save the changes.

Restart the Apache server for the changes to take effect:

sudo systemctl restart apache2
Apache on Ubuntu 18.04 has one server block enabled by default that is configured to serve
documents from the /var/www/html directory. While this works well for a single site, it can become
unwieldy if you are hosting multiple sites. Instead of modifying /var/www/html, let's create a
directory structure within /var/www for our domain site.
At some point, you need to go to a domain registrar and buy a domain name. | bought my domain
name on Google Domains and it cost $12 a year. Once you have a registered domain name, you
will be able to give the website we are creating a name and you will also be able to get a security
certificate to allow end to end encryption using Secure Socket Layer (SSL).

The next step we need is to create the directory for your_domain as follows:

sudo mkdir /var/www/your_domain

For our purposes, my domain name is scottibyte.com, so | will use it in the examples to follow:
sudo mkdir /var/www/scottibyte.com
The permissions of your web roots should be set by the following commands:

sudo chown -R $USER:$USER /var/www/scottibyte.com
sudo chmod -R 755 /var/www/scottibyte.com

Next, create a sample index.html page using nano:
sudo nano /var/www/scottibyte.com/index.html
Inside, add the following sample HTML:

<html>
<head>
<title>Welcome to Your_domain!</title>
</head>
<body>
<h1>Success! The your_domain server block is working!</h1>
</body>
</html>

Save and close the file when you are finished.

In order for Apache to serve this content, it's necessary to create a virtual host file with the correct
directives. Instead of modifying the default configuration file located at /etc/apache2/sites-available/
000-default.conf directly, let's make a new one at /etc/apache2/sites-available/scottibyte.com.conf

sudo nano /etc/apache?2/sites-available/scottibyte.com.conf

Paste in the following configuration block, which is similar to the default, but updated for our new
directory and domain name (I had to use www2, because | already have a www):

<VirtualHost *:80>

ServerAdmin vmsman@scottibyte.com

ServerName www2.scottibyte.com

ServerAlias www2.scottibyte.com

DocumentRoot /var/www/scottibyte.com

ErrorLog ${APACHE_LOG_DIR}/error.log

CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>

Make the changes to the file above for your site appropriately and save and exit the editor.

Let’s enable the file with the a2ensite tool:

sudo a2ensite scottibyte.com.conf
Disable the default site defined in 000-default.conf:

sudo a2dissite 000-default.conf
Next install net tools:

sudo apt install net-tools
Install curl:

sudo apt install curl
We need to know what IP address to assign to our website. You can assign a IPv4 address if you
are not using port 443 for SSL on your router. In that case you can create a port forward rule for
port 443 to the internal IPv4 address of the server we are building. We need to know the external
address of your router on the Internet thought, because the DNS entry will point to your router. To
find your router WAN address:

curl http://icanhazip.com

You would use the IPv4 address from the router obtained above to create a DNS "A" record named
www2.scottibyte.com, in my particular case.

Since IPv6 gives every system on your network a local address, you can issue the following
command to see the ipv6 address of the server we are creating:

ifconfig

As an example, | have highlighted my IPv6 address for the example server we are creaing below.
Your IPv6 global address will be different.

You would use your IPv6 global address to create a DNS "AAAA" record named
www?2.scottibyte.com, in my particular case.

Assuming you have defined either the A or the AAAA record or even both at your DNS provider, we
are ready for the next step. Don't worry about opening the server on your router/firewall, because
we will do that later.
Now edit the file the apache startup file:
sudo nano /etc/apache2/apache2.conf
At the very bottom of the file, create a new line:
ServerName localhost
CTRL-X and "Y" to save the file and exit the editor.
Restart Apache:
sudo systemctl restart apache2
Next, let’s test for configuration errors:
sudo apache2ctl configtest
You should see the following output:

Syntax OK

Apache should now be serving your domain name. You can test this by navigating to http://
www?2.scottibyte.com (your address will be different) where you should see this:

Success! The your_domain server block is working!
In order to test that your system is configured properly for PHP, create a very basic PHP script
called info.php. In order for Apache to find this file and serve it correctly, it must be saved to your
web root directory.
Create the file at the web root you created in the previous step by running:
sudo nano /var/www/scottibyte.com/info.php
This will open a blank file. Add the following text, which is valid PHP code, inside the file:
<?php

phpinfo();
?7>

When you are finished, save and close the file with CTRL-X and then "Y".

Now you can test whether your web server is able to correctly display content generated by this
PHP script. To try this out, visit this page in your web browser (with your domain):

http://www2.scottibyte.com/info.php
The web browser should display a PHP Info page.

This page provides some basic information about your server from the perspective of PHP. It is
useful for debugging and to ensure that your settings are being applied correctly.

If you can see this page in your browser, then your PHP is working as expected.

You probably want to remove this file after this test because it could actually give information about
your server to unauthorized users. To do this, run the following command:

sudo rm /var/www/scottibyte.com/info.php
Now that we have a website in Apache, the next step will be to secure the website with SSL.
WordPress serves dynamic content and handles user authentication and authorization. TLS/SSL is

the technology that allows you to encrypt the traffic from your site so that your connection is secure.

Since we have a domain name and either an "A" record or an "AAAA" record (or both) for our web
server that we added earlier, these are the key prerequisites to getting a security certificate.

We will use Let's Encrypt to obtain an SSL certificate is to install the Certbot software on your
server.

Install the following prerequisite:
sudo apt-get install software-properties-common
Add the repository:
sudo add-apt-repository ppa:certbot/certbot
You'll need to press ENTER to accept.
Install Certbot’s Apache package:
sudo apt install python-certbot-apache
Certbot needs to be able to find the correct virtual host in your Apache configuration for it to
automatically configure SSL. It does this by looking for a ServerName directive that matches the

domain you request a certificate for.

We set that value in your site configuration file /etc/apache2/sites-available/scottibyte.com.conf
(your name will differ).

Before we can get a security certificate, we need to open access through your firewall/router. This
is done either by port forwarding port 443 to the IPv4 address inside your network or by creating a
IPv6 WAN IN router rule which is covered in my IPv6 tutorials.

Be sure to create your firewall rule now. Allow port 80 and 443 through your firewall.

The Certbot Apache plugin will take care of reconfiguring Apache and reloading the config
whenever necessary. To use this plugin, type the following (with your server name):

sudo certbot --apache -d www2.scottibyte.com

This routine will ask for your email and also if you want to redirect all traffic through SSL. Choose
the SSL option:

webgod@Webserver-Tutorial: ~

webgod@Webserver-Tutorial: ~

Let's Encrypt’s certificates are only valid for ninety days. This is to encourage users to automate
their certificate renewal process. The certbot package we installed takes care of this for us by
adding a renew script to /etc/cron.d. This script runs twice a day and will automatically renew any
certificate that’s within thirty days of expiration.

To test the renewal process, you can do a dry run with certbot:

sudo certbot renew --dry-run
Now we have an operational website that uses SSL encryption. WordPress uses MySQL to
manage and store site and user information. We have MySQL installed already, but we need to
make a database and a user for WordPress to use.
To get started, log into the MySQL root (administrative) account by issuing this command:

mysql -u root -p

You will be prompted for the password you set for the MySQL root account when you installed
mysq| earlier in the tutorial.

First, we can create a separate database that WordPress will control. You can call this whatever you
would like, but we will be using wordpress in this guide to keep it simple. Create the database for
WordPress at the mysql prompt by typing:

CREATE DATABASE wordpress DEFAULT CHARACTER SET utf8 COLLATE utf8_unicode_ci;

webgod@Webserver-Tutorial: ~

webgod@Webserver-Tutorial: ~

Next, we are going to create a separate MySQL user account that we will use exclusively to operate
on our new database. Creating one-function databases and accounts is a good idea from a
management and security standpoint. We will use the name wordpressuser in this guide.

We are going to create this account, set a password, and grant access to the database we created.
We can do this by typing the following command. Remember to choose a strong password here for
your database user (and not 'password'):

GRANT ALL ON wordpress.* TO 'wordpressuser'@'localhost' IDENTIFIED BY 'password’;

You now have a database and user account, each made specifically for WordPress. We need to
flush the privileges so that the current instance of MySQL knows about the recent changes we’ve
made:

FLUSH PRIVILEGES;
EXIT;

When setting up our LAMP stack, we only required a very minimal set of extensions in order to get
PHP to communicate with MySQL. WordPress and many of its plugins leverage additional PHP
extensions.

We can download and install some of the most popular PHP extensions for use with WordPress by
typing:

sudo apt update
sudo apt upgrade
sudo apt install php-curl php-gd php-mbstring php-xml php-xmirpc php-soap php-intl php-zip

Next, we will be making a few minor adjustments to our Apache configuration. Based on the
prerequisite tutorials, you should have a configuration file for your site in the /etc/apache2/sites-
available/ directory. We’'ll use /etc/apache2/sites-available/wordpress.conf as an example here, but
you should substitute the path to your configuration file where appropriate.

Additionally, we will use /var/www/wordpress as the root directory of our WordPress install. You
should use the web root specified in your own configuration.

Currently, the use of .htaccess files is disabled. WordPress and many WordPress plugins use these
files extensively for in-directory tweaks to the web server’s behavior.

Open the Apache configuration file for your website:
sudo nano /etc/apache2/sites-available/scottibyte.com-le-ssl.conf
Add the following to this file:
<Directory /var/www/wordpress/>
AllowOverride All

</Directory>

You will notice that the domain name with "-le-ssl.conf" was created for you with the SSL
procedure. At this point, the file should look something like the following:

webgod@Webserver-Tutorial: fetc/apache2/sites-available

webgod@Webserver-Tutorial: /etc/apache2/sites-available

Now do a CTRL-X and "Y" to save.
Restart Apache to implement the changes:
sudo systemctl restart apache2
Now that our server software is configured, we can download and set up WordPress.
Change into a writable directory and then download the compressed WordPress release by typing:

cd /tmp
curl -O https://wordpress.org/latest.tar.gz

Extract the compressed file to create the WordPress directory structure:
tar xzvf latest.tar.gz

We will be moving these files into our document root momentarily. Before we do, we can add a
dummy .htaccess file so that this will be available for WordPress to use later.

Create the file by typing:
touch /tmp/wordpress/.htaccess

Copy over the sample configuration file to the filename that WordPress actually reads:
cp /tmp/wordpress/wp-config-sample.php /tmp/wordpress/wp-config.php

Create the upgrade directory, so that WordPress won'’t run into permissions issues when trying to
do this on its own following an update to its software:

mkdir /tmp/wordpress/wp-content/upgrade
Copy the entire contents of the directory into our document root. We are using a dot at the end of
our source directory to indicate that everything within the directory should be copied, including
hidden files (like the .htaccess file we created). Make sure you replace "scottibyte.com" with your
site name in the following command:

sudo cp -a /tmp/wordpress/. /var/www/scottibyte.com

One of the big things we need to accomplish is setting up reasonable file permissions and
ownership for the Wordpress files.

We'll start by giving ownership of all the files to the www-data user and group. This is the user that
the Apache webserver runs as, and Apache will need to be able to read and write WordPress files
in order to serve the website and perform automatic updates.

Update the ownership with chown:

sudo chown -R www-data:www-data /var/www/scottibyte.com

Next we will run two find commands to set the correct permissions on the WordPress directories
and files:

sudo find /var/www/scottibyte.com/ -type d -exec chmod 750 {} \;
sudo find /var/www/scottibyte.com/ -type f -exec chmod 640 {} \;

Now, we need to make some changes to the main WordPress configuration file.

When we open the file, our first order of business will be to adjust some secret keys to provide
some security for our installation. WordPress provides a secure generator for these values so that
you do not have to try to come up with good values on your own. These are only used internally, so
it won’t hurt usability to have complex, secure values here.

To grab secure values from the WordPress secret key generator, type:

curl -s https://api.wordpress.org/secret-key/1.1/salt/

The lines that are output from the command above should be copied into your cut buffer and pasted
info the file (your domain should be substituted:

sudo nano /var/www/scottibyte.com/wp-config.php

Search for the similar lines that you cut in the file above and replace them with the results from the
curl command above.

Next, we need to modify some of the database connection settings at the beginning of the file. You
need to adjust the database name, the database user, and the associated password that we
configured within MySQL.

The other change we need to make is to set the method that WordPress should use to write to the
filesystem. Since we've given the web server permission to write where it needs to, we can
explicitly set the filesystem method to “direct”. Failure to set this with our current settings would
result in WordPress prompting for FTP credentials when we perform some actions.

This setting can be added below the database connection settings, or anywhere else in the file:

Ivar/www/scottibyte.com/wp-config.php

define('DB_NAME', 'wordpress');

/** MySQL database username */
define('DB_USER', 'wordpressuser');

/** MySQL database password */
define('DB_PASSWORD', 'password');

define('FS_METHOD', 'direct’);
CTRL-X and "Y" to save and close the file.

Congratulations, we are ready to configure Wordpress. Open your web browser and go to the
address of your website. In my case it is:

https://www2.scottibyte.com/

At this point, the web interface should show the following:

(] & www2scottibyte.com

O vmscloud 0O vmsfog » Plex ={ Tautulli — uUniFi @& SmartThings -~ MyRecipes-IF... [0 loTnews O QVRPro @ OpenfireA

English (United States)

Afrikaans
A all

Al Ay
TSt
Azarbaycan dili
e A 5l
Benapyckas mMoBa
Brnrapcku

(G
Eﬁ‘ﬁtx]
Bosanski
Catala
Cebuano
Cestina
Cymraeg
Dansk
Deutsch (Schweiz, Du)
Deutsch (Schweiz)
Deutsch
Deutsch (Sie)
Deutsch (Osterreich)

Eom

EAANVIKA

English (UK)

English (South Africa)

English (Canada)

English (Australia)

English (New Zealand) -

The next page, you give your website a name and establish a username and password.

Welcome

Welcome to the famous five-minute WordPress installation process! Just fill in the information below and
you'll be on your way to using the most extendable and powerful personal publishing platform in the world.

Information needed
Please provide the Following information. Don't worry, you can always change these settings later.

Site Title wWebsite Tutorial

Username scott

Usernames can have only alphanumeric characters, spaces, underscores, hyphens,
periods, and the @ symbol.

Password |hypersuperstrong H g% Hide l
| Strong |
Important: You will need this password to log in. Please store it in a secure
location.
Your Email vmsman@scottibyte.com
Double-check your email address before continuing.
Search Engine Discourage search engines from indexing this site
visibility

It is up to search engines to honor this request.

Install WordPress

Next click on install Wordpress. You should see this screen after:

Success!

WordPress has been installed. Thank you, and enjoy!
Username scott

Password Your chosen password.

Click the login button and provide your username and password.
Wordpress dashboard:

@ A websiteTutorial O3 B0 4 New

If all is well, you will see the

Howdy, scott [l

@& Dashboard Dashboard
Home
3 © pismi
Welcome to WordPress!
o~ We've assembled some links to get you started:
O Media Get Started Next Steps More Actions
B Pages [write your first blog post BE] Manage widgets
Customize Your Site
® Ccomments + Addan About page B Manage menus

A Appearance

& Plugins @
.
-
) Site Health Status a Quick Draft
No information yet... Title
Q coll Site health checks will automatically run periodically to gather ‘ |
information about your site. You can also visit the Site Health
Content

or, change your theme completely

screen to gather information about your site now.

@ Set up your homepage

B Viewyoursite

What's on your mind?

B3 Tum comments on or off

/= Learn more about getting started

At a Glance a

A 1Post N 1Page

Save Draft
— EE=

WordPress 5.4.2 running Twenty Twenty theme.

WordPress Events and News
Activity a Attend an upcoming event near you. &

Recently Published Monday, Jul 13, 2020

i 7:00 pmi
Today, 5:34 Hello world!
oday, 5:34 pm ello worl i
RESEIECommEnts £ July Virtual Meetup - Topic Thursday, Jul 16, 2020
TBA 630 pm
@’ o online
moderating, editing, and deleting comments, please 9 Brooklyn Volunteer Saturday, Jul 18, 2020

Now you have a fully functional SSL encrypted website accessible from the public internet. You will
need to learn Wordpress to create your custom website. From this point on, all the options are
point and click configurable.

The advantage to this solution is that your website is completely self hosted and controlled by you
from your private network. All components of the website are locally based.

Wordpress has thousands of templates that you can access from the dashboard and configure to
meet your needs. There are several great online videos which will show you how to use Wordpress
to configure and customize your website.

